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Received 16 July 1984 

Abstract. We have studied the behaviour of two- and three-dimensional self avoiding walks 
confined to a wedge of wedge angle a. Series have been obtained and analysed for the 
(angular dependent) critical exponents characterising various edge susceptibilities. In terms 
of a general scaling form for the edge free energy, f,- t i d -2 )Y+ , (h t - )O" ,  h ,  I - ' ] " ,  h 2 1 - ' 2 Y ) ,  

we find for the two-dimensional case the following scaling indices: yo  = 91/48, y ,  = 3/8, 
y , ( a )  = -5a /8a .  We argue that these results are exact, from which follow all exponents 
for the bulk, surface and edge problem. In three dimensions we obtain yo= 2.488, y ,  = 
0.65i0.02, y , (a )  = a + b a / a  where a =0.51 iO.04, b = -0.847*0.017, which, for y 2 ,  is 
precisely of the functional form given by mean-field theory, y2(  a) = - a / 2 .  We argue 
that a = f for all three-dimensional O( N )  models. 

This simple angular dependence of y ,  is different from that suggested by Cardy's 
one-loop &-expansion. 

For the square lattice, we have also studied the case in which the wedge is rotated 
through an angle of a/4, and find that the various exponents are unchanged. 

For the three-dimensional Ising model in a wedge, analogy with our SAW results, plus 
mean-field results in conjunction with RG and series work yield y,1-2.485, y ,  =0.71 i O . 0 2  
and y, = a + b a / a  with a = f and b = -0.79 * 0.02. 

1. Introduction 

We consider the critical behaviour of the N-vector model confined to a wedge geometry. 
That is, the model is confined to the wedge formed by the intersection of two non-parallel 
( d  - 1 )-dimensional planar surfaces in a d-dimensional hypercubic lattice, with car- 
tesian coordinate system labelled {x,lS = 1, 2, . . . , d}. The two surfaces intersect on a 
( d  -2)-dimensional line perpendicular to xl and x2, with wedge angle a. 

The Hamiltonian of the model is 

where ut is a N-dimensional spin with components ((+io', p = 1, 2 , .  . . , N )  and Lo, L ,  
and L2 are bulk, surface and edge fields respectively, and are all parallel to U ! ' ) .  The 
first sum is over nearest-neighbour pairs, the second is over all spins, the third is over 
all surface spins in one of the ( d  - 1)-dimensional surface planes, and the fourth is 
over all edge spins. The edge magnetisation is 

that is, the expectation value of an edge spin. The derivative of m2 with respect to the 
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three fields yield three susceptibilities, namely, 

x 2 ( K )  = lim a m 2 ( K ;  Lo, LI,  L 2 ) / a L o -  t - Y 2  

x ~ ~ ( K )  = lim a m 2 ( K ;  Lo, LI,  L2)/aLI  - t - Y ~ l  

x2,(K) = lim am,(K;  Lo, L , ,  L2)/aL2-  t - Y 2 2 .  

LO+O 

L,-0 

L*-0 

These three edge susceptibilities are a natural generalisation of the surface suscep- 
tibilities, x1 and xI1  introduced by Binder and Hohenberg (1972), and, as shown by 
Cardy (1983), can be related to bulk exponents by a pair of scaling laws. 

Following Cardy’s notation, we write the free energy in the form 

F =  V f h + A L + L f , + .  . . (1.4) 

where V is the d-dimensional ‘volume’ of the system, A is the ( d  - 1)-dimensional 
‘area’ of a surface and L is the (d  - 2)-dimensional ‘length’ of the edge formed by the 
intersection of the two surfaces defining the wedge. The free energies fb, fs and f, 
denote the bulk, surface and edge free energies per spin respectively, and can be written 
in terms of bulk, surface and edge magnetic fields and temperatures as: 

fb - t2-“&( ht-””) 

fs - t2-”,$,(  ht-yo”, h ,  t - y i ” )  (1.5) 
f e -  t2-”.$,(ht-.YOU, hlf-Yi”,  h2f-Y2’) 

where t is the reduced temperature ( T  - Tc)/ T,; yo, y l  and y ,  are the bulk, surface 
and edge scaling indices, and (2 - a) = dv, (2 - a,) = (d - 1 ) v and (2 - a,) = ( d  - 2) v. 
All susceptibilities follow by taking the appropriate derivatives of (1.5), and we find 

x = a 2 f h / a h 2 -  f - Y ,  Y = 4 Y o -  d )  ( 1 . 6 ~ )  

xl  = d2fb/ah ah ,  - tCYI ,  (1.66) 

x I 1  = a2fs /ah: -  t-’:~,  ( 1 . 6 ~ )  

x2=a2fJah a h 2 -  t C Y 2 ,  Y 2 =  v(.Yo+y,+2-d) (1.6d) 

x 2 ,  = a2f , /ahl  ah2-  t C Y 2 I ,  Y z l =  v(Y,+Y2+2-d) (1.6e) 

Y1 = 4 Yo + Yl - d + 1 1 
y11= QYI - d + 1 )  

x22 = a2f,/ah: - t C Y 2 2 ,  Y22 = 42Y2 + 2 - d )  (1.m 

where the mean-field or Gaussian fixed point values can be obtained by setting Y =I ,  
y = 1, d = 4, yI = 1, y2 = - r / a .  The surface scaling law of Barber (1973), 2y1 - yl I = 
y +  v follows immediately from this formulation, as do two new edge scaling laws: 

2 Y 2  - Y22 = Y +2v, 2Y2 I - Y22 = Y I 1  + v. (1.7) 

To connect susceptibility exponents to correlation function exponents, we extend the 
treatment of Binder and Hohenberg (1972) to the wedge geometry. 

Consider the correlation function C(r’=O; p, xI, x2) between a spin at the edge 
( r ’ =  0, corresponding to p ’ =  xl = x i  = 0) and a spin at a distance (p,  xI, x2), where p 
is a ( d  - 2)-dimensional vector with components xj, x4, .  . . , xd. 

The correlation function will depend on the orientation of the vector (p ,  xl, x2) 
even near T,. Denote the magnitude of the vector by r, its orientation within the 



Critical behaviour at an edge 3541 

(xl ,  x 2 )  plane by 8 (clearly 0 s  8 < a) and its orientation within the surface plane by 
4, measured with respect to the edge. Thus we write C , ( p ,  xI,  x 2 )  = Cl(r,  8,4) = 
C(p’=O, x ;  =0, x ; =  0; p, xI,  x 2 ) .  For fixed T >  T,, we define the true correlation 
length 50.4 by xi = 0 

C I ( ~ ,  6, 4) r - x  - f ( r ,  6-4) exp[-r/&,+(t)I, t > O  (1.8) 

where f decays more slowly than the exponential term. For T =  T, the correlations 
decay with the usual power-law behaviour 

C,( r, 8, 4)  - A( 8, I$)/ rd-2 tqe .d ,  t = O  ( 1  -9) 
I + x  

which leads to the special cases 772 = 77( 8 > 0, 4 > 0), 7721( 8 = 0, 4 > 0) and T ~ ~ (  8 = 0, 
4 = 0). Clearly q2 < 7721 < 7722 as there are more paths for r12 than for 7721, and more 
paths for 7721 than for 7722. 

In terms of the previously defined correlation length, we have 

(1.10) 

where the prime on the summation indicates the additional constraint 8 S a. 
In the limit N + 0 of the N-vector Hamiltonian, following Sarma’s argument (Daoud 

et a1 1975) we find that xz is the generating function for self avoiding walks in the 
wedge that are terminally attached to the edge, x21 is the generating function for walks 
in the sector terminally attached to the edge and with their last vertex in the surface 
plane x1 = 0, while x Z 2  is the generating function for walks that start and finish on the 
edge. (There is a slight problem here for the d = 2  system as the ‘edge’ becomes a 
point, and the SAW’S become polygons. For this reason we will only discuss x22 for 
d > 2 . )  

Replacing sums in ( 1.10) by integrals and using (1.8) and (1.9) we find 

x- t - ’ ,= 1: sin 8 d 8  J: d 4  1: rd-I drg(8,  4)r2-d-”m,nr[r/58,+(t)r 8, 41 

x 2 -  t - Y 2 - [ 2 - 7 ”  I dx d e  d 4  h(x ,  8, 4), 

(1.1 1) 

where we have combined the correlation function behaviour for t > 0 and t = 0 to get 
the general form used above. Substituting x = r/(  yields 

and (- t-” (1.12) 

where vmin=min(q2,  vI2 ,  t 7 2 2 )  = 772. Hence 

7 2  = 4 2  - 772). (1.13) 

Similarly, we see that 

x 2 1 -  t - Y 2 1  = 1; sin 8 d 8  /:d+ lox d r  g( 8, q5)r2-d-7 mlnr(r/5, 6, 4 )  (1.14) 
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where now vmin = min( 7712, 7 7 2 2 )  = qI2.  Hence we find 

Y l 2  = 4 1 - 7712) (1.15) 

and similarly 

Y 2 2  = - w 2 2 .  (1.16) 

Combining ( 1.14), ( 1.15) and ( 1.16) with (1.7), we obtain 

77 = 2772 - 7722 and 7?22=27721-7711.  (1.17) 

This provides an alternative derivation for Cardy’s result 

77p.q = t ( 7 7 p 3 p + 7 7 q , q ) ;  p , 9 = 0 , 1 , 2  where 70,0= 77. (1.18) 

Cardy calculated these quantities to first order in E = 4 - d, and obtained 

772 = A - [ ( 5 A 2 +  1)(  N + 2 ) /  1 2 A (  N +  S ) ] E  + O ( E ~ )  (1.19) 

7722 = 2A - [ ( 5 A 2 +  1 ) (  N +  2)/6A( N + ~ ) ] E  + O( E ~ )  ( 1.20) 

with A = r / a  Previous one-loop results include 

77 = ( Y E 2 ) ,  7 7 1 ’  1 - [ ( N + ~ ) / ~ ( N + ~ ) ] E + O ( E ’ ) ,  

7 7 1 1  = 2 - [ ( N + 2 ) / ( N + 8 ) ] ~  +O(E ’ )  (1.21) 

v = f + [ ( N +  2)/4( N +  S ) ] E  +O(E ’ ) ,  ( 1.22) 

and 

for which we can derive the following expansions: 

A ( N + 2 )  ( A 2 -  12A - 1)  
E y z =  1 ---- 

2 ( N + 8 )  24A 

A (N+2) 1 A2-6A-1 
y 1 2 = - - - - -  2 ( N + 8 ) 4 (  6A )‘ 
Y ~ ~ = - A - - - - -  ( N + 2 )  1 ( A 2 -  - 1 ) & .  

( N + 8 ) 2  6A 

For the scaling index y 2  Cardy gives 

( 1.23) 

( 1.24) 

( 1.25) 

( 1.26) 

which displays a complicated dependence on wedge angle which is not supported by 
our series analysis. 

After much of this work was completed we heard of the work of Barber et a1 (1984), 
who have studied the two-dimensional king model in wedge and conical geometries. 
In our notation they find y 2  = - r / 2 a  for the wedge geometry, a strikingly simple result. 

In this paper we have generated and analysed the susceptibility series for the N = 0 
(SAW) case, for both the square and simple cubic lattices. For the square lattice we 
have also generated and analysed some mean square end-to-end distance series. 

We find in two dimensions that y 2 =  -5r /8a,  a strikingly similar result to that 
found by Barber er a1 (1984) for the two-dimensional Ising model, and in three 
dimensions y 2  = a + b r / a ,  where a = 0.5 1 f 0.046 and b = -0.85 i 0.01 5 .  
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The generation of the series is discussed in the next section, while 0 3 describes 
the analysis. The final section comprises a discussion and conclusion, in which we 
extend our results to the three-dimensional Ising model. 

2. Enumeration of series coefficients 

In order to determine the series coefficients, we have used a variant of the dimerisation 
technique previously used for neighbour avoiding walks (Torrie and Whittington 1975). 
In order to determine say, all ( m  + n)-step walks terminally attached to the edge and 
confined to the wedge, we first enumerate all such m-step terminally attached walks, 
and all n-step (unconstrained) SAW'S. We then consider the set of ( m  + n)-step walks 
constructed by concatenating all m-step terminally attached walks with all n-step 
unconstrained SAW'S, the common vertex being the non-terminally attached vertex of 
the m-step walk. The (m+n)-step walks so constructed include all (m+n)-step 
terminally attached walks, in addition to walks which must be discarded because either 
(a) they are not self avoiding or (b) they occupy regions of space outside the confining 
wedge. 

By judicious bit-mapping of forbidden regions, the test for rejection reduces to a 
logical AND operation. In this manner we have obtained a variety of series, for both 
the square and simple cubic lattices. 

We adopt the notational convention of denoting the various susceptibilities by C 
rather than x, to indicate that they are in fact chain generating functions. The various 
subscripts have the same meaning as the subscripts on ,y defined in the previous section. 

Thus we denote the generating function for terminally attached walks confined to 
a wedge of angle a, with the terminal attachment taking place at the edge, by 

C,(a, z )  = c(,2)(a)z" 
n P O  

where cL2) (a)  is the cardinality of such n-step walks. A similar notation is used for 
C21(a ,  z )  and Cz2(a, z ) .  Subsequently we may drop the explicit dependence on a or 
z for notational simplicity if no confusion can occur. 

For the square lattice we have obtained expansions for C2(a, z )  and C2,(a, z )  for 
a = in  and a =:T. Series for a = n have been given previously in Barber et a1 
(1978)-hereafter referred to as B1. We also give these expansions for a = in  in the 
case where the coordinate system has been rotated by +T with respect to the lattice 
major axes. Mean square end-to-end distances for walks enumerated by C2( a, z )  have 
also been determined. 

For the simple cubic lattice we have obtained expansions for Cz(a, z ) ,  CZl (a ,  z )  
and CZ2(a, z), for a = T ,  f~ and :T. 

The square lattice series are listed in tables l ( a )  and l (b) ,  and the simple cubic 
lattice series are given in table 2. This work corrects an error in the fourteenth coefficient 
of C,,(T, z )  in B1. 

3. Analysis of series 

Prior to analysing the series for the square and simple cubic lattices, we first wish to 
establish the connective constant. For the surface problem (which is just the wedge 
problem with a = T ) ,  Whittington (1975) has shown that the connective constant 
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Table l(o). Square lattice series coefficients, wedge angle = 7r/2. 

Lattice rotated by n/4 

1 1 0 2 2 1 
2 3 1 4 12 1 
3 5 0 10 50 2 
4 15 3 24 188 4 
5 29 0 60 652 9 
6 83 12 146 2140 18 
7 179 0 366 6766 41 
8 49 5 56 912 20 868 89 
9 1125 0 2302 63 118 207 

10 3063 28 I 5800 188 004 467 
I I  7179 0 14722 553 074 1101 
12 I9 401 1495 37 368 1610776 2552 
13 46 363 0 95 304 4651 784 6092 
14 124 673 8245 243 168 13 338 744 14377 
15 302 27 1 0 622 518 38 014 494 34 678 
16 809 92 1 46 827 I594 622 IO7 767 964 82 959 
17 I984 959 0 4094 768 304 100 432 201 800 
18 5 304 947 271 884 I O  521 384 854 624 852 487 904 
19 13 1 I O  907 0 27 085 436 2393093804 1195 213 
20 34 972 559 1607 277 69 768 478 6679 440 288 2914427 
21 87 014 349 0 179 982 688 18589013256 7181 988 
22 231 756 983 9641 935 464 564 220 51 597 951 784 17 635 162 
23 579 803 757 0 1200 563 864 43 679 583 
24 1542417375 58 555 291 107 879 951 
25 268 378 064 
26 666 121 087 

remains unchanged from its bulk value by bounding the number of terminally attached 
walks by the number of polygons. A similar, but slightly more tortuous construction 
allows us to draw the same conclusion for a =in, but Hammersley and Whittington 
(1985) have produced an elegant proof that holds for arbitrary cy > 0, for all the 
generating functions considered here. Thus in analysing the wedge data we have used 
the bulk connective constants. For the square lattice we have used the mean of the 
most recent series analysis (Guttmann 1984), real-space RG (Derrida 1981) and Monte 
Carlo (Berretti and Sokal 1984) estimates, which give for the connective constant 
p =2.63815~0.00015. For computational ease we have used the mnemonic p = 
( 1  1 +J5)”’- 1 = 2.63814. . . . For the simple cubic lattice we have re-analysed the bulk 
SAW generating function C(x) using the RG estimate (Le Guillou and Zinn-Justin 1980) 
of the exponent y = 1.1615. Pad6 approximants to [C(x)]”’ have well-converged poles 
at x, = 1 / p = 0.2 13494, a change of 0.0 1 ‘/o from the estimate used in a previous analysis 
( B l )  for the analogous free surface problem. 

In support of the scaling form ( 1 S ) ,  we next show that the mean square end-to-end 
distance exponent v remains unchanged from its bulk value in the wedge geometry. 
We do  this by computing ( R ~ ) b u l k / ( R ~ (  e ) )  For 0 = fn and 0 =arr and for square lattice 
data. (The case 0 = n has been studied previously by Whittington (1975) and by 
Guttmann er al (1978) for 0 = irr but with a series four terms shorter.) Denoting the 
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Table l(b).  Square lattice series coefficients, wedge angle = 7 / 4 .  

1 1 1 1 
2 2 6 1 
3 3 19 1 
4 8 68 2 
5 14 I90 4 
6 36 610 8 
7 70 1618 15 
8 177 4870 31 
9 372 12 776 66 

10 942 37 270 142 
1 1  2056 97 264 306 
12 5222 277 858 678 
13 I I  736 723 856 1512 
14 29 878 2039 120 3410 
15 68 576 5309 076 7750 
16 I75 038 14 805 780 17 786 
17 408 328 38 549 984 41 067 
18 1044 533 IO6 693 682 95 514 
19 2468 26 1 277 890 08 1 223 295 
20 6326 688 764 597 138 525 203 
21 1 5  IO7 015 1992327855 1240 734 
22 38 791 865 5456154914 2945 383 
23 93 432 564 7019 239 
24 240 296 399 I6 795 983 

40 325 120 25 
26 97 153 672 
27 234 753 693 
28 568 950 192 

583 001 850 

exponents by v b  and vg respectively, we have that 

r, = ( R ~ ) b , l k / ( R ~ (  e ) )  - An2'Yb-"e). (3.1) 

Linear and quadratic alternate extrapolants, defined by 

rn / rn - 2 1 / log[ n / ( n - 2 )  1 
s, = f [ n 4 ,  - ( n  - 2)rn-J  
t ,  = [ n 2s, - ( n - 2 ) 2 s ,  -J/ (4 n - 4) 

( 3 . 2 a )  
(3.2b) 

(3.3) 
("' = log( 

should then provide estimators of 2( vb - Vg). For 0 = we find Vg - vb < 0.025, and 
for e =$T, v g  - v b  ~ 0 . 0 3 .  In both cases the sequences of estimates {s,} and { t , }  are 
steadily decreasing, and support the conclusion that vg = vb for 0 > 0. 

Our series analysis uses the methods of our earlier work (Bl) ,  in which we first 
transform the series using an Euler transformation z = 2x/ ( 1 + p x )  which maps the 
non-physical singularity in the generating function at x = - l /p  to infinity, while the 
physical singularity is a fixed point of the transformation. If C, are the coefficients of 
the transformed generating function 2'( z), so that e( z )  = C C,z" - i( 1 - px)-^,  then 
the exponent A can be estimated from A, = 1 + n(E,/pC,-, - I ) .  Better converged 
estimates of A can be obtained by Neville table extrapolation of the sequence {A,,} 
against l / n  in the usual manner (Gaunt and Guttmann 1974). 
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Table 2. Simple cubic lattice series coefficients. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 

5 
21 
93 

409 
1853 
8333 

37 965 
172 265 
787 557 

3593 465 
16 477 845 
75481 105 

346 960 613 
1593924045 
7341070889 

4 
12 
40 

136 
528 

2032 
8344 

33 576 
140912 
582 088 

2482 240 
10451 064 
45 101 536 

192 562 328 
838 630 216 

2 
2 
8 

20 
88 

264 
1200 
3864 

I7 812 
61 044 

282 808 
1012 932 
4707 048 

I7 417 356 
81 1 I7 028 

307 858 040 
1436 163312 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 

4 
14 
56 

226 
958 

4052 
I 7  508 
75 634 

330 804 
1448 830 
6397 288 

28 293 338 
I25 845 174 
560 617 586 

2507890716 

3 
7 

22 
70 

26 1 
950 

374 1 
I4 363 
58 039 

230 777 
951 321 

3877 714 
16 230 430 
67 368 995 

285 373 770 

2 
2 
6 

14 
54 

I50 
622 

1882 
7978 

25 898 
I l l  298 
379 798 

1649 502 
5845 638 

25 600 082 
93 459 726 

412071 226 
1540777002 

3 
8 

27 
92 

336 
1264 
4906 

19 307 

312 972 
1282 188 
5296 014 

22 073 614 
92 599 3 12 

391 122480 

n 346 

3 
7 

19 
52 

160 
524 

1847 
665 1 

24 630 
92 132 

351 686 
1356 640 
53 I4 070 

20 994 170 
83 886 700 

337 513 782 

2 
2 
4 
8 

22 
50 

162 
442 

1590 
4718 

17 350 
54 134 

204 324 
669 172 

2588 952 
8805 572 

34 687 814 
121 539 150 
485 928 042 

In this way, in B1, we obtained yI = 0.945 * 0.005 and yl I = -0.19T;g for the square 
lattice SAW series. Those estimates were made under the assumption that p = 2.6385. 
Using our refined estimate of the connective constant p, these become yl  = 0.953 f 0.006 
and yi  = -0.19 * 0.02. 

It is enlightening to consider the values of the scaling indices in the light of these 
results and Neinhuis (1982) exact values for the bulk exponents, y = 43/32, v = 3/4. 
From the bulk exponents and ( 1 . 6 ~ )  we obtain yo = 91/48. Given that all known bulk 
exponents for the square lattice SAW and Ising models are rational fractions with 
denominators given by powers of two, it is to be expected that y ,  and yI  also display 
this feature. Assuming then that y ,  = a/64, where a is an unknown integer to be 
determined, our estimate 0.953 f 0.006 gives a = 60.9 f 0.6, which suggests a = 61 exactly 
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and hence that the scaling index y, = 318. This implies that y l l  = -3/16= -0.1875, in 
precise agreement with our series estimate. If a were taken to be 60 or 62 instead of 
61, this would give yI  I = -0.21875 or -0.15625 respectively, both of which are outside 
the error bounds for y1 ,, and y1 = 0.9375 or 0.96875 either of which would require a 
doubling of our already conservative error estimates. Accordingly, we believe that 
these values are exact, that is, 

yl I = -3/  16, 71 = 61/64, yo= 91/48 ,VI = 318. (3.4) 

The assumptions underlying these results are supported by the recent work of Friedan 
et a1 (1984) who have shown that the critical exponents of many two-dimensional 
models follow from the conformal invariance of the system. The simple, rational, form 
of the exponents then follows from this observation. 

Turning now to the wedge series, C,(a) ,  C 2 , ( a )  and C22(a) ,  these have been 
analysed in precisely the same manner as described above. There is a steady deterior- 
ation in the quality of the data as a decreases, and, for fixed a, as one proceeds 
through the hierarchy C 2 ( a )  -f C21(a)  -f C22(a) .  As an indication, we show the detailed 
results of our analysis of C2( 77/4) and C2,( 7r/2) for the square lattice in table 3. From 
these results, we estimate y2(  4 4 )  = -0.46 f 0.02 and y2,( ~ / 2 )  = -0.67 +0.04. In table 
4 we summarise our results for all series, both for the square and simple cubic lattices. 
In order to determine the nature of the angular dependence of the scaling index y,, 
and hence the exponents y2, yZl and y2, ,  we first note that, if the wedge angle a = rr, 
the wedge problem degenerates into the surface problem. That is, y2(7r) = yI  and 
y2, (7 r )  = y , , .  From (1.6b) and (1.6d) we therefore obtain y2(7r)  = y ,  - 1. Now for the 
two-dimensional Ising model Barber er a1 (1984) have obtained y ,  = - ~ / 2 a .  It seems 
likely that a similar, simple angular dependence could prevail for the SAW problem 
too. To pursue this possibility further, we note (3.4) that y2(  n)  = y ,  - 1 = -518 for the 
two-dimensional SAW model, which would imply that y 2 ( a )  = - 5 ~ / 8 a  for this model. 
We thereby obtain for the exponents 

y2( a ) = 9 1 164 - 15 7~132 a, 7 2 ,  (CY) = 9/32 - 15 ~ / 3 2 a ,  

y22( a )  = - 15 r/ 160. (3.5) 

Table 3. Results of analysis for exponent y2(71/4) and y2,(x/2) for the square lattice SAW 

series. 

C,(71/4) c, 1 ( .rr/ 2) 
Linear Quadratic Linear Quadratic 

n A n  extrapolants extrapolants A n  extrapolants extrapolants 

15 -0.0886 -0.4161 -0.3874 -0.1944 -0.5836 -0.5850 
16 -0.1087 -0.4103 -0.3702 -0.2185 -0.5808 -0.5609 
17 -0.1262 -0.4057 -0.3709 -0.2397 -0.5784 -0.5600 
18 -0.1416 -0.4032 -0.3831 -0.2585 -0.5777 -0.5727 
19 -0.1553 -0.4029 -0.400 I -0.2754 -0.5791 -0.5908 
20 -0.1676 -0.4043 -0.4171 -0.2907 -0.5821 -0.6091 
21 -0.1791 -0.4068 -0.43 10 -0.3048 -0.5861 -0.6245 
22 -0.1896 -0.4099 -0.4409 -0.3 178 -0.5907 - 0.6 3 6 2 
23 -0.1994 -0.4132 -0.447 1 -0.3298 -0.5954 - 0.6444 
24 -0.2084 -0.4162 -0.4502 -0.341 1 -0.5999 -0.649 7 
25 -0.2168 -0.4191 -0.45 14 -0.3516 -0.6041 - 0.6 5 3 0 
26 -0.3615 -0.6080 -0.6548 
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Table 4. Summary of exponent estimates. 'Exact' results come from yo = 91/48, y ,  = 3/8, 
y 2 ( a )  = -5~r /8a .  Conjectured results derive from the assumed form y , (a)  = 
4-0.847 * 0.017. 

~ ~ 

Square lattice Simple cubic lattice 
Series 'Exact' Series 'Conjectured' 

Exponent estimates results estimates estimates 

0.952 f 0.006 0.953 125 0.676 * 0.009 
0.484*0.012 0.484 375 0.16 * 0.03 
0.483f0.012 0.484 375 

-0.46* 0.01 -0.453 125 -0.9 i 0.2 
-0.19k0.02 -0.1875 -0.41 0.3 
-0.67 f 0.04 -0.656 25 -1.0*0.3 
- 1.59 zt 0.05 - 1.593 75 <-1.3 

-1.0*0.1 
-2.1 f 0.2 
-3.020.3 

0.67 f 0.02 
0.17 * 0.03 

-0.82 * 0.07 
-0.40* 0.04 
-0.90 * 0.06 
- 1.905 0.09 
- I .OO f 0.03 
- I .99 f 0.07 
-3.98 f 0.14 

f Lattice rotated by 71/4 with respect to coordinate system. 

Evaluating these for a =;T, &r we obtain the values shown in table 4. It can be seen 
that the agreement with all square lattice series results is excellent, and we confidently 
conjecture that these results are exact. 

To further test this conjecture, we have again followed a method introduced in Bl, 
and formed products which are independent of the connective constant and should 
have vanishing critical exponent. That is, denoting 

C2(X, a )  = c c ' , (a)xf l ,  
n a o  

C,,(X, a )  = c ' , ' ( a ) x " ,  

C,,(X, a )  = c c ? ( a ) x "  

n a O  

n 9 0  

then from (1.6d, e, f) we find 

[c',(.rr)]'c',(.rr/4)/[~',(~/2)]~ - constant n* 

[c; ' (  .rr)I2c','( .rr/4)/[c2,'( .rr/2)]3 - constant n* 

[c?( .rr)12c2,2( .rr/4)/[c2,2( - constant n2+ 

(3.7) 

(3.8) 

(3.9) 

where 

4 = 4 2 Y 2 ( 4  + y 2 ( 4 4 )  - 3 ~ , ~ 2 ) 1 .  (3.10) 

If y , ( a )  is a linear function of l / a ,  y 2 ( a )  = a + b.ir/a, then 4 = 0. We have formed 
these products, and estimated 4 from the ratios of alternate terms and their linear and 
quadratic extrapolants. In order to save space we do not show the resultant sequences. 
For the square lattice we find from C2(x, a )  that 141 < 0.008, and from Czl(x, a )  that 
/~$ )<0 .02 .  For the simple cubic lattice we find from C2(x, a )  that (~#11<0.015, from 
Czl(x, a )  that 141 <0.03 and from C2,(x, a )  that 141 <0.06. 

The estimates are steadily decreasing in magnitude, and are already sufficiently 
close to zero that they provide additional strong support for our conjecture that 4 = 0 
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for both the square and simple cubic lattices. To investigate the assumption that 
y 2 ( a )  = a + b r / a  further, we point out that there exist numerous products of the form 

c:"(a)/c~"(a/2) -constant ns m=0,  1,2 (3.1 1) 

where c?(a) denotes c',(a) etc and 

8 = U[ y2( a )  - y2( a/2)]  = - v b r /  CY 

= 2 ~ [  y2( a )  - y2( a / 2 ) ]  = - 2 v b r /  

( m  =0 ,  1) 

( m  =2).  
(3.12) 

We have formed several instances of such products, and analysed the resulting sequen- 
ces for 6 in the same manner as our analysis for 4. For the square lattice data, we 
obtain for m = 0, a = r, the result - v b r /  a = -0.467 k 0.003, or b = -0.623 * 0.004. 
From y2( r) = y ,  - 1 = -51 8, it follows that a = -0.002 * 0.004. This then provides strong 
support for our result y 2 ( a )  = - 5 r / 8 a .  

For the sc lattice series, we obtain the following results: 

e( m = 0, a = T) = 0.498 * 0.009, 

e (m=l , a= . r r )=0 .50*0 .02 ,  e ( m  = 1, a =&T)= l.OkO.l (3.13) 

e ( m = 2 , a = ~ ) = l . 0 1 * 0 . 0 4 ,  

e( m = 0, a = &r) = 0.99 * 0.02 

e ( m  = 2, a =&T) = 2.0*0.4. 

These are all consistent with the assumed linear form for y 2 ( a ) ,  and yield b = 
(-0.498 * 0.009)/ v. Using the current RG estimate of v = 0.588 0.001 5, we find 6 = 
-0.847 k 0.017. In order to determine a we need an exponent estimate. Our direct 
analysis of the three-dimensional series utilised the same methods as did the two- 
dimensional analysis (and B1) and the results are also shown in table 4. From 
y2( r) = y ,  = 0.676 k 0.009 and the RG estimates (Le Guillou and Zinn-Justin 1980) 
y =  1.1615*0.0020 and v=O.588*0.0015, we obtain yo=2.488*0.004, y ,  = 
0.662 k 0.022 and y 2 (  r) = -0.338 * 0.022. Then from y2( a )  = a + b r /  a, and b = 
-0.847 * 0.017, we get a = 0.509 k0.039. These results then give 

y 2 ( r / 2 )  = 0.178 y,(T/4) = -0.818 

y2l( a )  = -0.40 y2l( ~ / 2 )  = -0.89 y21( ~ / 4 )  = - 1.88 (3.14) 

y22( a )  = -0.99 "22(T/2)=-1.98 y22(7T/4)=-3.97. 

These are all in good agreement with our series results, apart from y22(7T/4) where 
the series seems strangely well-converged at an exponent value of -3.0. As we have 
remarked previously, this is the lowest quality data of all, and accordingly this 
discrepancy can be dismissed, and we conclude that the simple form assumed for y2 
is probably correct. 

4. Discussion and conclusion 

For the two-dimensional self avoiding walk data in a simple wedge geometry of wedge 
angle a, we find the critical behaviour to be described by the scaling form (1.4), (1.5) 
with v = 3/4, yo= 91/48, y ,  = 3/8 and y2 = -5.rr/8a, from which all exponents follow 
by the usual scaling laws, as derived in § 1. 

In this study, the lattice axes have been chosen to coincide with the axes of the 
Cartesian coordinate system used in defining the wedge. In order to test whether this 
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choice has any effect on the exponent values, we generated data for the case a = 4.n 
but with the lattice rotated by a.rr with respect to the coordinate system. Thus the 
wedge boundaries were the square lattice diagonals. Repeating the analyses of the 
previous section for C2(r/2) defined in this way, we find y2(7r/2) = 0.483 i0.012, (see 
table 4) in excellent agreement with the conjectured exact result yz( r / 2 )  = 0.484 375. 
We also generated the series CI2(.rr/2) for this geometry, but as all odd terms vanish, 
the series was too short for all but the crudest analysis, which was consistent with our 
exact value. 

In three dimensions, the assumption of a simple linear form for y 2 ( a )  is well 
supported by the data. We find that the three-dimensional data are also well represented 
by the scaling form (1.4), (1.5), where both RG and series estimates have been used to 
estimate the scaling indices. These are shown in table 5. 

Table 5. Scaling indices for two- and three-dimensional N-vector models in a wedge. The 
two-dimensional results are believed to be exact. In three dimensions, yo derives from RG 
estimates, y ,  and y 2  from series analysis estimates. 

Mean N=O N =  1 N = 2  N = 3  N = m  
field (SAW) (Ising) (PCW (CHI (Spherical) 

d = 2  
1.895 833 1.875 - - - Yo  2 

Yi 0 0.375 0.5 
Y2 - T / ( Y  -5a/8a - a / 2 a  - - - 

- - - 

d = 3  

Y l  0.5 0.66 * 0.02 0.71 * 0.02 ? ? ? 
~2 0 .5 -n la  0 . 5 t b n l a  0.5+ba/a ? ? ? 

Yo 2.5 2.488 f 0.004 2.485 f 0.004 2.484 i0.004 2.483 f 0.004 2.5 

b = -0.847 k0.017 b = -0.79 * 0.02 

For the two-dimensional Ising model confined to a wedge, Barber et a1 (1984) have 
found analogous behaviour, described by the scaling form (1.4) and (1.5), where the 
appropriate scaling indices are also shown in table 5. 

It is instructive to compare the results of the scaling index yz( a )  with the mean-field 
value, y2(  a )  = 1 - f d  - r / a .  For d = 2 ,  this gives y 2 ( a )  = - b r / a ,  with b = 1, which is 
precisely of the form found for both the Ising and SAW models-with, of course, a 
different constant b. For d = 3, the mean-field result is y2(  a )  = 4- b r / a ,  with b = 1, 
which again is precisely of the form found for the SAW model. Our series results are 
not sufficiently accurate that we can confidently assert that the leading constant is 
exactly f  for the SAW model, but since mean-field theory accurately predicts the leading 
constant for both d = 2 models, it seems at least plausible that this should also be true 
for d = 3 models. This would allow the ready evaluation of more accurate exponent 
estimates than given in (3.14), and these are shown in the last column of table 4. More 
significantly, it would then follow that y 2 ( a )  =f+ b r / a  for all three-dimensional 
N-vector models, where b = b( N ) .  For the Ising model, we can estimate b( 1) using 
the series for y ,  given by Whittington et a1 (1979). Their analysis gave y ,  = 0.78i0.02 
and we have re-analysed the series using the highly accurate value for the critical 
temperature obtained by several recent Monte Carlo studies (e.g. Pawley et al 1983), 
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U, = tanh(J/kT,) = 0.218 90, and by comparing the behaviour of the exponent estimates 
with those of the (longer) SAW series. In that way we estimate y ,  = 0.755 * 0.010. Then 
using the RG results y = 1.241 * 0.002, v = 0.630* 0.0015, we get yo = 2.485 * 0.004, and 
our estimate of y ,  gives y ,  = 0.71 3 f 0.023, so that y2( r )  = 1 - y ,  = -0.287 0.023. The 
assumption that yz( a )  = ;+ b r / a  then yields 6 = -0.787 * 0.023. In the last column 
of table 4 we list the exponents that follow from this assumption. 

The assumption that y 2 ( a )  =++ b r / a  could perhaps be tested by determining 
y 2 ( a )  for the spherical model, but the well known difficulties of interpreting the 
spherical model in a non-translationally invariant geometry militate against this 
procedure. 

A more convincing argument follows from Cardy's one-loop expansion for y2, 

~2 = d / 2 -  1 - 6 +[(5a2+ 1 ) (  N + ~ ) ] E /  1 2 S ( N + 8 ) + 0 ( ~ ~ )  (4.1) 

for the N-vector model, where S = r / a .  We note that the order E term contains no 
constant part, implying that the constant part is given solely by the leading (mean-field) 
term. This observation is, we believe, a convincing argument for y 2 ( a )  = f. 

We have no explanation for the surprisingly complex form of the O ( E )  term in 
(4.1). Our analysis suggests that y 2 ( a )  = a +  b6, with a = d / 2 -  1 and b = b ( N ,  d ) .  
However Cardy has pointed out other difficulties with his expansion that occur when 
the angle a S 12". Possibly these difficulties can be traced to the problem of defining 
such manifestly geometric concepts as edges and wedges within the framework of a 
continuum theory. Penultimately, we make the amusing observation that 

(4.2) 

fits all available data exactly for d = E = 2, and only differs from the best numerical 
results by a few percent for d =3.  

It is worth noting that, while y 2 ( r )  = y , ,  y2(27r) # y. The reason for this is that 
y 2 ( 2 r )  is the exponent characterising the number of SAW'S that are rooted at the origin 
and never cross the semi-infinite hyperplane x2 = 0, x, > 0. 

~2 = d / 2  - 1 - S + [3( N + 2 ) ] S ~ / 4 (  N + 8 )  
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Addendum. After the completion of this work we were told of an as yet unpublished 
result of J Cardy, who has obtained t),, = (2v-t- 1)/(4v- 1 )  from which the results we 
claim to be exact for the two-dimensional SAW model follow directly. Cardy has also 
obtained the angular dependence of y2( a )  for the two-dimensional SAW model reported 
here. 
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